Home Search Collections Journals About Contact us My IOPscience

Pressure-induced superconductivity in a ferromagnet, UGe₂: resistivity measurements in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys.: Condens. Matter 14 10779 (http://iopscience.iop.org/0953-8984/14/44/376) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.97 The article was downloaded on 18/05/2010 at 17:10

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 10779-10782

PII: S0953-8984(02)54111-4

Pressure-induced superconductivity in a ferromagnet, UGe₂: resistivity measurements in a magnetic field

T C Kobayashi¹, K Hanazono², N Tateiwa¹, K Amaya², Y Haga³, R Settai⁴ and Y Onuki^{3,4}

¹ Kyokugen, Osaka University, Toyonaka, Osaka 560-8531, Japan

² Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

³ Advanced Science Research Centre, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

⁴ Graduate School of Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received 27 May 2002 Published 25 October 2002 Online at stacks.iop.org/JPhysCM/14/10779

Abstract

Electrical resistivity measurements in a magnetic field are carried out on UGe₂ which exhibits pressure-induced superconductivity. The superconductivity is observed from 1.06 to 1.44 GPa. In the temperature and field dependences of the resistivity at $P > P_C$ where the ferromagnetic ordering disappears, it is observed that the application of an external field along the *a*-axis increases the coefficient *A* of the Fermi-liquid behaviour ($\propto AT^2$) abruptly—corresponding to the metamagnetic transition. The characteristic enhancement of H_{C2} is reconfirmed for $H \parallel a$ -axis. The upper critical field of H_{C2} is anisotropic: $H_{C2}(T)$ exhibits positive curvature for $H \parallel b$ -axis and $H \parallel c$ -axis.

1. Introduction

Recently, pressure-induced superconductivity has been found in the itinerant ferromagnet UGe₂ [1]. This is a unique system, where the superconductivity seems to arise from the same electrons as produce the band magnetism.

The resistivity measurement shows that the superconductivity occurs at T_{SC} well below the Curie temperature T_C for pressure in the range 1.0 < P < 1.6 GPa. It is confirmed by neutron scattering experiments that the ferromagnetic component of the order is still present at pressures and temperatures where the superconductivity is observed [2]. The bulk nature of the superconductivity is established from heat capacity measurements [3]. These experimental facts verify that the ferromagnetic ordering and superconductivity coexist in UGe₂.

It is suggested that another transition at T^* in the ferromagnetic state is related to the appearance of superconductivity [2]; that is, T_{SC} shows a maximum at the critical field for P_C^* where T^* disappears. An unusual re-entrant behaviour of the superconductivity in the magnetic field along the *a*-axis is observed at P = 1.35 GPa ($>P_C^*$), where T^* is present due to a magnetic

0953-8984/02/4410779+04\$30.00 © 2002 IOP Publishing Ltd Printed in the UK

field. These experimental facts are interpreted by considering a CDW/SDW transition to occur at T^* . Another characteristic behaviour of the transition at T^* is an anomalous increment of the magnetization. The increment of the magnetization reaches 20% of that above T^* [4, 5].

In this paper, we report the experimental results on the electrical resistivity in the magnetic field, focusing on the relation between the superconductivity and the disappearance of T^* and T_C .

2. Experimental details

A single crystal was grown by the Czochralski method in a tetra-arc furnace. The purities of the starting materials were 99.98% (U) and 99.999% (Ge). The ingot was annealed at 800 °C in a high vacuum of 5×10^{-11} Torr for seven days. For the present sample, the residual resistivity ρ_0 and the residual resistivity ratio (RRR) (= ρ_{RT}/ρ_0) were 0.26 $\mu\Omega$ cm and 600, respectively, at ambient pressure.

Pressure was applied by utilizing an indenter cell [6] with a Daphne oil (7373) as the pressure-transmitting medium. The pressure value was determined from the superconducting transition temperature T_{SC} of lead. The effect of a field on T_{SC} for the ferromagnetic sample was negligibly small; this was checked at ambient pressure.

3. Results and discussion

The P-T phase diagram determined from the electrical resistivity measurements is shown in figure 1(a); T_C , T^* and T_{SC} are determined from the kink and peak of $d\rho/dT$ and zero resistance, respectively. Superconductivity is observed from 1.06 to 1.44 GPa. T_{SC} shows a maximum at around $P_C^* = 1.22$ GPa where T^* disappears. In this experiment, a ferromagnetic– nonmagnetic transition is considered to occur at $P_C \sim 1.44$ GPa, as described later. This critical pressure is slightly different from that reported previously [1, 2], which may be attributed to sample dependence or the experimental error of the pressure determination. But it is consistent that the superconductivity disappears at around P_C and the coefficient A of the Fermi-liquid behaviour ($\propto AT^2$) retains a large value in the range $P_C^* < P < P_C$, as shown in figure 1(b). The non-Fermi-liquid behaviour expected at the quantum critical point is not observed even in the vicinity of P_C^* and P_C . It is characteristic that there is no increment of ρ_0 and A in the vicinity of $P_C \sim 1.44$ GPa, suggesting that the ferromagnetic–nonmagnetic transition at P_C is first order.

Figures 2(a) and (b) show the temperature and field dependences of the resistivity at P = 1.67 GPa (> P_C). Application of an external field along the *a*-axis (easy axis) increases the coefficient A abruptly at H_m due to the metamagnetic transition from the paramagnetic state at low field to the strongly polarized state at high field [7]. Further application of the field induces the transition at T^* above $H^* = 7.2$ T [2]. The appearance of T^* reduces the coefficient A and increases the residual resistivity. These behaviours of A and ρ_0 correspond to their pressure dependences at zero field, as shown in figure 1. At P = 1.44 GPa, the critical field H_m exists near zero field, which indicates that $P_C \sim 1.44$ GPa for the present sample. At P = 1.22 GPa, neither T^* nor H^* can be identified in the respective temperature and field dependences of the resistivity, indicating that $P_C^* \sim 1.22$ GPa.

The superconducting H-T phase diagram for $H \parallel a$ -axis at several pressures is shown in figure 3. The enhancement of the upper critical field H_{C2} is reconfirmed at P = 1.34 GPa by the tuning of H^* at low temperature to 2.0 T where re-entrant behaviour of the superconductivity has been observed in [2]. The critical fields H^* at each pressure are shown in figure 4.

Figure 1. (a) The pressure–temperature phase diagram of UGe₂. (b) The pressure dependence of ρ_0 and *A* in the Fermi-liquid behaviour $\rho = \rho_0 + AT^2$.

Figure 2. (a) The temperature dependence of the resistivity in a magnetic field parallel to the *a*-axis at 1.67 GPa ($>P_C$). (b) The field dependence of the resistivity at the same pressure.

The upper critical fields H_{C2} are very sensitive to the critical field H^* . Watanabe *et al* [8] developed a microscopic theory where the CDW/SDW fluctuation enhances T_{SC} and reproduces a qualitatively anomalous superconducting H-T phase diagram. Figure 4 shows the field dependence of T_{SC} at 1.22 GPa where T_{SC} shows a maximum. The initial slope of $-dH_{C2}/dT$ is about 5.3 T K⁻¹ for all directions, while the upper critical field H_{C2} at the lowest temperature is anisotropic. Here $H_{C2}(T)$ exhibits anomalous positive curvature for $H \parallel b$ and $H \parallel c$, which is similar to the case for the heavy-fermion superconductor UBe₁₃ [9]. Similar results for the anisotropic H_{C2} were obtained independently by Sheikin *et al* [10].

4. Conclusions

In the temperature and field dependences of the resistivity at $P > P_C$, abrupt variations of the coefficient A are found at H_m and H^* : the metamagnetic transitions. From these measurements in a magnetic field, the critical pressures are determined as $P_C^* \sim 1.22$ GPa and $P_C \sim 1.44$ GPa. The superconducting transition temperature T_{SC} shows a maximum at around P_C^* and disappears at around P_C , where the coefficient A maintains a maximum over the range $P_C^* < P < P_C$. The upper critical field H_{C2} is sensitive to H^* at low temperature and thus the characteristic enhancement of H_{C2} is reconfirmed. These results support the notion that critical fluctuation due to the disappearance of T^* causes superconductivity. Moreover, H_{C2} is anisotropic: $H_{C2}(T)$ exhibits positive curvature for $H \parallel b$ and $H \parallel c$.

Figure 3. The superconducting H-T phase diagram for several pressures. The external field is applied parallel to the *a*-axis (easy axis).

Figure 4. The anisotropy of the superconducting H-T phase diagram.

Acknowledgments

We are grateful to K Miyake and S Watanabe for helpful discussions. This work was supported by a Grant-in-Aid for COE Research (10CE2004) from the Japanese Ministry of Education, Science, Sports, Culture and Technology.

References

- [1] Saxena S S et al 2000 Nature 406 587
- [2] Huxley A et al 2001 Phys. Rev. B 63 144519
- [3] Tateiwa N et al 2001 J. Phys.: Condens. Matter 13 L17
- [4] Tateiwa N et al 2001 J. Phys. Soc. Japan 70 2876
- [5] Pfleiderer C and Huxley A D 2002 Phys. Rev. Lett. 89 147005
- [6] Eremets M I et al 1998 Rev. High Pressure Sci. Technol. 7 469-74
- [7] Huxley A et al 2000 Physica B 284-288 1277
- [8] Watanabe S et al 2002 J. Phys. Soc. Japan 71 2489
- [9] Glemot L et al 1999 Phys. Rev. Lett. 82 169
- [10] Sheikin I et al 2001 Phys. Rev. B 64 220503